If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10=-17x
We move all terms to the left:
3x^2+10-(-17x)=0
We get rid of parentheses
3x^2+17x+10=0
a = 3; b = 17; c = +10;
Δ = b2-4ac
Δ = 172-4·3·10
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-13}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+13}{2*3}=\frac{-4}{6} =-2/3 $
| 3(x+3)=x+42 | | -8x+69=59+51x | | 14−2c=8 | | 83(x+5)=−4x+83 | | 3x+4=3x=4 | | 2z-z-4=6-z | | 2(n-1)+2(n-2)=-5 | | -5x+5=-11+3x | | $6.30+y=$25 | | 0=(7−x)(6x+1) | | (12-2x)×(14-2x)=99 | | 53=y+29 | | (12-x)×(14-x)=99 | | 7/8y-3/8=28 | | 53=y=29 | | 4^x=10 | | 180=(4x+5)+41 | | 8=4(5-x) | | x-7/18=25 | | x-6=5(+3) | | x+(-8)=-15.6 | | x+(-8)=-15.5 | | 19=8x+9 | | 1/4(28x+8)-6=-1/2(14x-4) | | -56+9x=+14 | | X^2+6x-1080=0 | | 8+y=61 | | 9^x=3^x-2 | | X+4t+12=0 | | 12x-103=131 | | 3(2-x)=8(x-2 | | 61+73+x=180 |